January 4, 2012 Get out your notes...

(assignment from yesterday will be due tomorrow)

1/4 - Transformations of Graphs of Functions

Question:

What can you do to a graph and still have it maintain it s original shape and size?

If the original equation is $f(x) = x^2$ write the equation that is:

$$g(x) = (x+3)$$

3 units to the left
$$g(x) = (x+3)^2$$
.

4 units to the right $g(x) = (x-4)^2$

2 units up
$$9(x)=x^2+2$$

5 units down
$$g(x) = x^2 - 5$$

reflected over the
$$x-axis$$
 $g(x) = -x^2$

Summary of translations/reflections:

c units to the left

$$g(x) = f(x+c)$$

c units to the right

$$g(x) = f(x - c)$$

c units up

$$g(x) = f(x) + c$$

c units down

$$g(x) = f(x) - c$$

reflected over the x-axis g(x) = -f(x)

$$g(x) = -f(x)$$

c is a positive real number

- f(x) - 2 - 1 - 1 - 1

What transformations are being used? Write answers as g(x) in terms of f(x).

$$f(x) = x^{2}$$

$$g(x) = -x^{2} + 1$$

$$g(x) = -f(x) + 1$$

$$g(x) = (x+2)^{2} - 3$$

$$g(x) = f(x+2)^{2} - 3$$

$$g(x) = -(x-4)^{2}$$

$$g(x) = -(x-4)^{2}$$

$$g(x) = -(x-4)^{2}$$

$$f(x) = |x|$$

$$g(x) = |x| + 5$$

$$g(x) = f(x) + 5$$

$$g(x) = -|x - 1| - 2$$

$$g(x) = -(x - 1) - 2$$

HOMEWORK

Page 318 #10-42 even

Due