Alg1

March 6, 2012

3/6 - Solving Systems using Elimination

What if you can't solve one equation for one variable without getting fractions?

This is the only type today.

We need a new method...

$$5x - 4y = 20$$

$$+ -2x + 4y = 4$$

$$3x = 24$$

$$5x - 4y = 20$$

$$5(8) - 4y = 20$$

$$40 - 4y = 20$$

$$-2x - 4y = -12$$

$$+ 2x - 3y = -2$$

$$-7y = -14$$

$$-7y = 2$$

$$2x - 3y = -2$$

$$2x - 3(2) = -2$$

$$2x - 6 = -2$$

$$2x = 4$$

$$2x = 4$$

$$x = 2$$

- 1. ...
- 2. Add equations
- 3. Solve for the variable
- 4. Substitute into an equation with both variables
- 5. Solve for the variable
- 6. What's the point?

(5'5)

$$-3x + 6y = -30$$

$$+ +3x + 5y = 3$$

$$11y = -33$$

$$3x + 5y = -3$$

$$4y = -3$$

$$4y = -3$$

$$3x + 5y = -3$$

$$4y = -3$$

$$4y = -3$$

$$3x + 5y = -3$$

$$4y = -3$$

- 1. Change the signs of one equation to make the coefficients on one variable opposites.
- 2. Add equations
- 3. Solve for the variable
- 4. Substitute into an equation with both variables
- 5. Solve for the variable
- 6. What's the point?

$$+ -8x + 6y = 4$$

$$\times = -1$$

$$9x + 6y = 3$$

$$9(-1) + 6y = 3$$

$$-9 + 6y = 3$$

$$-9 + 6y = 3$$

$$-9 + 6y = 3$$

9x + 6y = 3

- 1. Change the signs of one equation to make the coefficients on one variable opposites.
- 2. Add equations
- 3. Solve for the variable
- 4. Substitute into an equation with both variables
- 5. Solve for the variable
- 6. What's the point?

$$-2 \cdot (4x - 5y = 4)$$

$$6x - 10y = -4$$

$$-8x + 10y = -4$$

$$-8x + 10y = -4$$

$$-2x = -12$$

$$x = 6$$

$$4(6) - 5y = 4$$

$$-3y = -2y$$

$$-3y = -2y$$

$$-5y = 4$$

$$-3y = -2y$$

$$-5y = 4$$

- 1. Multiply one equation by whatever it takes to make the coefficients on one variable opposites.
- 2. Add equations
- 3. Solve for the variable
- 4. Substitute into an equation with both variables
- 5. Solve for the variable
- 6. What's the point?

$$4.(-2x + 2y = 2)$$

$$8x + 9y = 9$$

$$-8x + 8y = 8$$

$$+ 8x + 9y = 9$$

$$17y = 7$$

$$-7y = 7$$

- 1. Multiply one equation by whatever it takes to make the coefficients on one variable opposites.
- 2. Add equations
- 3. Solve for the variable
- 4. Substitute into an equation with both variables
- 5. Solve for the variable
- 6. What's the point?

$$-8x + 9y = 25$$

$$2 \cdot (4x + 3y = -5)$$

$$-8x + 9y = 25$$

$$-8x + 9y = 25$$

$$-8x + 9y = -5$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-10$$

$$-$$

メニ・2

- 1. Multiply one equation by whatever it takes to make the coefficients on one variable opposites.
- 2. Add equations
- 3. Solve for the variable
- 4. Substitute into an equation with both variables
- 5. Solve for the variable
- 6. What's the point?

Homework

Pink Systems WS8
#1=19 odd only

Dure Wednesday