September 21, 2011

Warm-Up:

Multiply.

9/21 - Dividing Integers

Get out your RED book - turn to page 19.

Do example #1.

1 **EXAMPLE:** Dividing Integers with Different Signs

Draw a picture to show how you use integer counters to find $-15 \div 3$.

Division and Multiplication are inverse operations

so you can rewrite divide equations as multiply equations.

$$8 \div 2 = 4$$

$$2 \cdot 4 = 8$$

$$-12 \div 3 = -4$$

$$3 \cdot (-4) = -12$$

 $(-4) \cdot 3 = -12$

$$(-4) \cdot 3 = -12$$

In the RED book...

Do #2,3 and 4.

ACTIVITY: Rewriting a Product as a Quotient

Work with a partner. Rewrite the product $3 \cdot 4 = 12$ as a quotient in two different ways.

First Way

12 is equal to 3 groups of ______

Second Way

12 is equal to 4 groups of 3 .

EXAMPLE: Dividing Integers with Different Signs

Rewrite the product $-3 \cdot (-4) = 12$ as a quotient in two different ways.

What can you conclude?

First Way

irst Way
$$(2 \div (-4) = (-3))$$

$$(2 \div (-4) = (-3))$$

$$(5 \div (-4) = (-3)$$

Look at the signs - what are the rules for dividing integers?

(Discuss with your partner)

$$+ \div + = +$$
 John Rul

$$+ \div - = -$$

$$-\div + = -$$

$$-\div -=$$
 $+$

page 20

Work with a partner. Complete the table.

	Exercise	Type of Quotient	Quotient	Quotient: Positive, Negative, or Zero
1	5. −15 ÷ 3	diff	-5	_
2	6. 12 ÷ 4	same	3	+
3	7. 12 ÷ (-3)	4:tt	-4	
4	8. -12 ÷ (-4)	same	3	+

Homework:

Worksheet: P9²²

due Friday