M7H

MAY 4, 2012

NOTHING DUE SINCE IT'S A SHORT DAY!

5/4 - Theoretical Probability

777

the-o-ret-i-cal

[thee-uh-ret-i-kuhl]

adjective

- of, pertaining to, or consisting in <u>theory</u>; not practical (distinguished from <u>applied</u>).
- 2. existing only in theory; hypothetical.
- 3. given to, forming, or dealing with theories; speculative.

Work with your partner and come up with an easy definition for "theoretical"...

Theoretical Probability

When all possible outcomes are equally likely, the **theoretical probability** of an event is the ratio of the number of favorable outcomes to the number of possible outcomes. The probability of an event is written as P(event).

 $P(\text{event}) = \frac{\text{number of favorable outcomes}}{\text{number of possible outcomes}}$

Examples of experiments that have outcomes which are equally likely:

flipping a coin p (even)
rolling even on adie
picking a marble w/ 5 blues / 5 reds
Same size sections on a spinner

You randomly choose one of these letters. What is the theoretical probability of:

If all 6 sections are equal in size, create 5 questions you could ask using different events.

for example:
P(animal with a furry tail)

If the letters of **Butler Middle** were separately printed on cards and one card was randomly drawn, find each theoretical probability:

P(vowel)=
$$\frac{4}{12} = \frac{1}{3}$$
P(not B)= $\frac{11}{12}$

P(a letter in the word Butler)=
$$\frac{3}{12}$$

In the remaining time, work with your partner to create 4 different experiments then create 3 questions, with different desired outcomes, for each experiment. (What you don't finish in class will be homework.)

Provide the panswers!